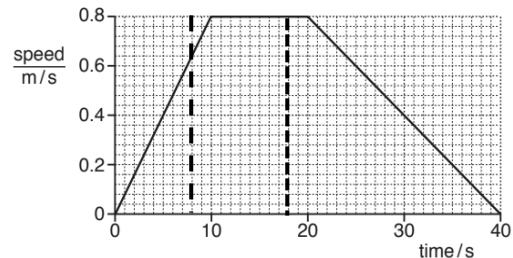


Motion, forces and energy

P1.2 Motion

Speed

- Definition: Speed = distance travelled per unit time. Equation: $v = \frac{s}{t}$ where v = speed (m/s), s = distance (m), t = time (s).
- Average speed: total distance travelled \div total time taken


Distance-Time Graphs

- Gradient (slope) = speed.
- Horizontal line: object at rest.
- Straight diagonal line: constant speed.
 - Calculating speed from a distance-time graph. Gradient (slope) = speed
 - Speed = change in distance \div change in time $s = \frac{\Delta d}{\Delta t}$
- Steeper line: faster speed.
- Curved line getting steeper: object is accelerating (speeding up). Curved line getting flatter: object is decelerating (slowing down).

Speed-Time Graphs

- Horizontal line: constant speed.
- Upwards slope, straight line: constant acceleration - speed rises at a steady rate
 - Acceleration is the change in speed per unit time for an object moving in a straight line.
 - $a = \frac{\Delta v}{\Delta t}$ where a = acceleration (m/s^2), Δv = change in speed (m/s) and Δt = time taken for change (s)
- Downwards slope: straight line: constant negative acceleration or constant deceleration.
- Area under the line: distance travelled
 - Rectangles: base \times height
 - Triangles: $\frac{1}{2}$ base \times height

e.g. $(1/2 \times 10 \times 0.8) + (10 \times 0.8) + (1/2 \times 20 \times 0.8) = 20 \text{ m}$

Free fall

- Near the Earth's surface: acceleration due to gravity $g \approx 9.8 \text{ m/s}^2$. All free-falling objects accelerate downward at roughly this rate (ignoring air resistance).